Denaturing gradient gel electrophoresis (DGGE) as a tool for identification of marine nematodes

نویسندگان

  • A. A. Cook
  • P. Bhadury
  • N. J. Debenham
  • B. H. M. Meldal
  • M. L. Blaxter
  • G. R. Smerdon
  • M. C. Austen
  • P. J. D. Lambshead
  • A. D. Rogers
چکیده

Many phyla of marine invertebrates are difficult to identify using conventional morphological taxonomy. Larvae of a wider set of phyla are also difficult to identify as a result of conservation of morphology between species or because morphological characters are destroyed during sampling and preservation. DNA sequence analysis has the potential for identification of marine organisms to the species level. However, sequence analysis of specimens is time-consuming and impractical when species diversity is very high and densities of individuals huge, as they are in many marine habitats. The effectiveness of the 18S rRNA gene sequences for identification of one speciesrich marine group, the Nematoda, is analysed. Following identification of variable regions of the 18S rRNA gene, primers were designed to amplify a small segment of sequences suitable for denaturing gradient gel electrophoresis (DGGE). The effectiveness of DGGE for identifying individual species is analysed. DGGE analysis of natural communities of nematodes detected less than ⁄3 of the species present. This fraction of the community probably represents the abundant species in the original samples. It is concluded that DGGE is not a useful tool for analysis of species richness in marine communities as it fails to detect rare species of which there are usually many in the marine benthic environment. However, DGGE may be a useful method for detecting changes in communities that influence the abundance of the most common taxa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diversity of eukaryotic plankton of aquaculture ponds with Carassius auratus gibelio, using denaturing gradient gel electrophoresis

PCR-denaturing gradient gel electrophoresis (DGGE) and canonical correspondence analysis (CCA) were used to explore the relationship between eukaryotic plankton community succession and environmental factors in two aquaculture pond models with gibel carp Carassius auratus gibelio. The main culture species of pond 1 were gibel carp and grass carp, and the combined density was 46224 fingerling/ha...

متن کامل

Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities.

An annual seasonal cycle of composition of a bacterioplankton community in an oligotrophic coastal system was studied by denaturing gradient gel electrophoresis (DGGE) using five different primer sets. Analysis of DGGE fingerprints showed that primer set 357fGC-907rM grouped samples according to seasons. Additionally, we used the set of 16S rRNA genes archived in the RDPII database to check the...

متن کامل

Using the DCodeTM System to Identify DNA Sequence Variation for Studies of Population Structure in Marine Organisms

Introduction DNA polymorphisms are useful tools for ecological and evolutionary studies of both terrestrial and marine organisms, with applications ranging from species identification to delineation of population structure to monitoring genetic change in wild or domesticated populations. Denaturing gradient gel electrophoresis (DGGE) using the DCode universal mutation detection system provides ...

متن کامل

Design and Evaluation of PCR Primers for Denaturing Gradient Gel Electrophoresis Analysis of Plant Parasitic and Fungivorous Nematode Communities

A PCR-DGGE primer pair, Tyl2F-Tyl4R, specific to plant parasitic and fungivorous nematodes was designed based on the 18S rRNA gene. The results of community analysis using the primers showed that they are specific to the order Tylenchida. This primer pair detected species belonging to Tylenchida with high sensitivity and high resolution. The number of detected species of plant parasitic and fun...

متن کامل

Validation of double gradient denaturing gradient gel electrophoresis through multigenic retrospective analysis.

Among established techniques for the identification of either known or new mutations, denaturing gradient gel electrophoresis (DGGE) is one of the most effective. However, conventional DGGE is affected by major drawbacks that limit its routine application: the different denaturant gradient ranges and migration times required for different DNA fragments. We developed a modified version of DGGE f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005